7. BENT ELEMENTS

BENT ELEMENT
 - LINEAR: JOIST / BEAM / GIRDER (US)
 - SLAB

	WIKIPEDIA	CAMBRIDGE DICTIONARY	BBC DICTIONARY	OXFORD DICTIONARY
Joist SE grinda	Horizontal supporting members that run from wall to wall, wall to beam, or beam to beam to support a ceiling, roof or floor	A long thick piece of wood, steel or concrete which is used in a buildings to support a floor or ceiling	Long, thick piece of wood, metal or concrete that is used in buildings or other structures, especially to support a floor or ceiling	A length of timber or steel supporting part of the structure of a building, typically arranged in parallel series to support a floor or ceiling
Beam SE grinda	Structural element that is capable of withstanding load primarily by resisting bending	A long thick piece of wood, metal or concrete, especially used to support weight in a building or other structure	Long thick bar of wood, metal or concrete, especially one which is used to support the roof of a building	Long, sturdy piece of squared timber or metal used to support the roof or floor of a building
Girder ME rigla	The main horizontal support of a structure which supports smaller beams	A long thick piece of steel or concrete, etc. which support a roof, floor, bridges or other large structure	Long thick piece of steel or iron that is used in the frameworks of building and bridges	Large iron or steel beam or compound structure used for building bridges and the framework of large buildings

SE - secondary element
ME - main element

7. BENT ELEMENTS

BEAM

$\ell \geq 3 \mathrm{~h}$; usual $\ell / \mathrm{h}=8 . . .10$
STATIC ANALISYS $\rightarrow \mathrm{M}_{\mathrm{Ed}}, \mathrm{N}_{\mathrm{Ed}}, \mathrm{V}_{\mathrm{Ed}}$ $\mathrm{M}_{\mathrm{Ed}} \& \mathrm{~N}_{\mathrm{Ed}} \rightarrow$ BENDING WITH AXIAL FORCE SR EN 1998 \& P100: $\mathrm{N}_{\text {Ed }} \leq 0,1 \mathrm{~A}_{\mathrm{c}} \mathrm{f}_{\mathrm{cd}} \rightarrow$ axial force may be neglected

SLAB

$$
\ell_{\min } \geq 5 h_{\text {slab }}
$$

7. BENT ELEMENTS

7.1. SIMPLE REINFORCED RECTANGULAR SECTION
7.2. DOUBLE REINFORCED RECTANGULAR SECTION
7.3. SIMPLE REINFORCED FLANGED SECTION
7.4. DOUBLE REINFORCED FLANGED SECTION

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

7.1.1. SECTION ANALISYS

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

EQUILIBRIUM CONDITIONS WILL BE ACHIVED BY THE EQULISATION OF THE ACTION EFFECTS WITH THE RESISTING INTERNAL FORCES

$\Sigma \mathrm{F}=0$
$\Sigma \mathrm{M}=0$

Bending moment can be related to any axis as for instance to the A_{s} axis or to the F_{c} axis

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

$\Sigma \mathrm{F}=0$
$\mathrm{F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{s}} \rightarrow 0,8 \mathrm{bxf}_{\mathrm{cd}}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{yd}}$
$\mathrm{x}=1,25 \frac{\mathrm{~A}_{\mathrm{s}} \mathrm{f}_{\mathrm{yd}}}{\mathrm{bf}_{\mathrm{cd}}} \quad$ with $\xi=\frac{\mathrm{x}}{\mathrm{d}} \rightarrow \xi=1,25 \frac{\mathrm{~A}_{\mathrm{s}} \mathrm{f}_{\mathrm{yd}}}{\mathrm{bdf}_{\mathrm{cd}}}$
$\xi=1,25 \frac{\mathrm{~A}_{\mathrm{s}}}{\mathrm{bd}} \cdot \frac{\mathrm{f}_{\mathrm{yd}}}{\mathrm{f}_{\mathrm{cd}}}=1,25 \rho \frac{\mathrm{f}_{\mathrm{yd}}}{\mathrm{f}_{\mathrm{cd}}} \quad$ with $\rho=\mathrm{A}_{\mathrm{s}} / \mathrm{bd}$ - reinforcement ratio
$\xi \rightarrow$ relative value of neutral axis depth
$\omega=\rho \frac{f_{y d}}{f_{c d}}$ - mechanical ratio of reinforcement
$\xi=1,25 \omega \quad \rightarrow \quad \omega=0,8 \xi$

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

$$
\begin{aligned}
& \mathrm{\Sigma} \mathrm{M}=\mathbf{0} \rightarrow \text { related to the } \mathrm{A}_{\mathrm{s}} \text { axis } \\
& \mathrm{M}_{\mathrm{Ed}}=\mathrm{F}_{\mathrm{c}} \mathrm{z} \\
& \mathrm{z}=\mathrm{d}-0,5(0,8 \mathrm{x})=\mathrm{d}-0,4 \mathrm{x} \\
& \mathrm{M}_{\mathrm{Ed}}=0,8 \mathrm{bx} \mathrm{f}_{\mathrm{cd}}(\mathrm{~d}-0,4 \mathrm{x}) \\
& \text { with } \mathrm{x}=\xi \mathrm{d} \\
& \mathrm{M}_{\mathrm{Ed}}=0,8 \mathrm{~b}(\xi \mathrm{~d}) \mathrm{f}_{\mathrm{cd}}[\mathrm{~d}-0,4(\xi \mathrm{~d})]=\mathrm{bd}^{2} \mathrm{f}_{\mathrm{cd}} 0,8 \xi(1-0,4 \xi) \\
& \text { with } \mu=0,8 \xi(1-0,4 \xi) ; \text { but using } \xi=1,25 \omega \rightarrow \mu=\omega(1-0,5 \omega) \\
& (*) \mathrm{M}_{\mathrm{Ed}}=\underbrace{\mu \mathrm{bd} \mathrm{f}_{\mathrm{cd}}^{2}}_{\mathrm{M}_{\mathrm{Rd}}}
\end{aligned}
$$

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

$\Sigma \mathrm{M}=\mathrm{O} \rightarrow$ related to the A_{c} axis

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{Ed}}=\mathrm{F}_{\mathrm{s}} \mathrm{z} \\
& \mathrm{M}_{\mathrm{Ed}}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{yd}}(\mathrm{~d}-0,4 \mathrm{x}) \\
& \mathrm{M}_{\mathrm{Ed}}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{yd}}(\mathrm{~d}-0,4 \xi \mathrm{~d})=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{yd}} \mathrm{~d}(1-0,4 \xi) \\
& \text { with } \zeta=\frac{\mathrm{z}}{\mathrm{~d}}=1-0,4 \xi
\end{aligned}
$$

already knowing $\xi=1,25 \omega$
$\zeta=1-0,5 \omega \rightarrow$ relative value of the lever arm

$$
\mathrm{M}_{\mathrm{Ed}}=\underbrace{\zeta \mathrm{dA}_{\mathrm{s}} \mathrm{f}_{\mathrm{yd}}}_{\mathrm{M}_{\mathrm{Rd}}}
$$

Stress diagram

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

In conclusion, one of the following relationships may be used for resisting bending moment calculation

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{Rd}}=\mu \mathrm{bd}^{2} \mathrm{f}_{\mathrm{cd}} \\
& \mathrm{M}_{\mathrm{Rd}}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{yd}} \zeta \mathrm{~d}
\end{aligned}
$$

WAYS TO INCREASE RESISTING BENDING MOMENT			
h	h $\boldsymbol{7}$ 2h	100\% same as d $7 \approx 110 \%$	110\%
p	1\% 7 2\%	100\%	(60...80\%)
f_{yd}	PC52 7 PC60	45\%	37\%
f_{cd}	20 MPa 740 MPa	100\%	6\%
b	$b \pi 2 b$	100\%	6\%

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

ALL PREVIOUS COEFFICIENTS ARE RELATED BETWEEN

 THEM BY $\rho, \mathrm{f}_{\mathrm{cd}} \& \mathrm{f}_{\mathrm{yd}}$TWO TYPES OF TABLES MAY BE USED FOR CALCULATIONS:

Table (1): any type of steel \& concrete with $\mathrm{f}_{\mathrm{ck}} \leq 50 \mathrm{MPa}$
Table (2): steel PC52, PC60, S400, S500 \& concrete with $\mathrm{f}_{\mathrm{ck}} \leq 50 \mathrm{MPa}$

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

Calculation of bent elements with rectangular or flanged section
Table (1)
limit values

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

Table (2) Calculation of bent elements with rectangular or flanged section
$\operatorname{PC5} 2 \& \mathrm{f}_{\mathrm{s}} \leq 50 \mathrm{MPa}$

$\mathrm{f}_{\mathrm{yyd}}=300 \mathrm{MPa} ; \zeta_{\text {max }}=0,710$											
$\mu=\frac{M_{\mathrm{Ed}}}{\mathrm{~b} d^{2} \mathrm{f}_{\mathrm{cd}}}$			$\omega=\frac{A_{2}}{b d f_{c d}}$		$A_{1}=\omega b d \frac{f_{c d}}{f_{y d}}=\frac{p}{100} b d ; M_{R d}=\mu b d^{2} f_{c d}$						
			C12	C16	C20	C25	C30	C35	C 40	C45	C50
$\boldsymbol{\mu}$	-	5	reinforcement percentage $p=100 A_{2}$ bd								
0,02	0,020	0,025	0,054	0,072	0,090	0,112	0,135	0,157	0,180	0,202	0,224
0,04	0,041	0,051	0,109	0,145	0,181	0,227	0,272	0,318	0,363	0,408	0,454
0,05	0,052	0,077	0,165	0,220	0,275	0,344	0,413	0,432	0,550	0,619	0,683
0,08	0,083	0,104	0,223	0,297	0,371	0,464	0,557	0,649	0,742	0,835	0,928
0,10	0,106	0,132	0,232	0,375	0,469	0,587	0,704	0,821	0,938	1,056	1,173
0,11	0,117	0,146	0,312	0,415	0,519	0,649	0,779	0,909	1,038	1,168	1,298
0,12	0,128	0,160	0,342	0,456	0,570	0,712	0,855	0,997	1,140	1,282	1,425
0,13	0,140	0,175	0,373	0,497	0,621	0,776	0,932	1,087	1,242	1,398	1,553
0,14	0,151	0,189	0,404	0,539	0,673	0,842	1,010	1,178	1,346	1,515	1,683
0,15	0,163	0,204	0,436	0,581	0,726	0,907	1,089	1,270	1,452	1,633	1,815
0,16	0,175	0,219	0,468	0,624	0,779	0,974	1,169	1,364	1,559	1,754	1,949
0,17	0,188	0,234	0,500	0,667	0,834	1,042	1,251	1,459	1,668	1,876	2,084
0,18	0,200	0,250	0,533	0,711	0,869	1,111	1,353	1,556	1,778	2,000	2,222
0,19	0,213	0,266	0,567	0,756	0,945	1,181	1,417	1,654	1,890	2,126	2,362
0,20	0,225	0,282	0,601	0,801	1,002	1,252	1,503	1,753	2,004	2,254	2,504
0,21	0,238	0,298	0,636	0,848	1,050	1,325	1,589	1,854	2,119	2,364	2,649
0,22	0,252	0,315	0,671	0,895	1,119	1,398	1,678	1,957	2,237	2,517	2,796
0,23	0,265	0,351	0,707	0,943	1,178	1,473	1,768	2,052	2,357	2,652	2,946
0,24	0,279	0,349	0,744	0,992	1,240	1,549	1,859	2,169	2,479	2,789	3,099
0,25	0,293	0,366	0,781	1,041	1,302	1,627	1,953	2,278	2,603	2,929	3,254
0,26	0,307	0,384	0,819	1,092	1,365	1,707	2,043	2,389	2,790	3,072	3,413
0,27	0,322	0,402	0,858	1,144	1,430	1,783	2,145	2,503	2,860	3,218	3,575
0,28	0,337	0,421	0,898	1,197	1,496	1,870	2,245	2,619	2,993	3,367	3,741
0,29	0,352	0,440	0,938	1,251	1,564	1,955	2,346	2,737	3,128	3,519	3,910
0,30	0,368	0,459	0,980	1,307	1,634	2,042	2,450	2,859	3,267	3,675	
0,31	0,384	0,479	1,023	1,364	1,705	2,131	2,557	2,983	3,409	3,856	
0,32	0,400	0,500	1,067	1,422	1,778	2,222	2,667	3,111	3,556	4,000	
0,33	0,417	0,521	1,112	1,482	1,853	2,316	2,779	3,243	3,706		
0,34	0,434	0,543	1,158	1,544	1,930	2,413	2,895	3,378	3,861		
0,35	0,452	0,565	1,206	1,608	2,010	2,513	3.015	3,518			
0,36	0,471	0,589	1,256	1,674	2,093	2,616	3,139	3,662			
0,37	0,490	0,613	1,307	1,743	2,178	2,723	3,267	3,812			
0,38	0,510	0,638	1,360	1,814	2,267	2,834	3,401	3,967			
0,39	0,531	0,664	1,416	1,888	2,360	2,950	3,540				
0,40	0,553	0,691	1,474	1,965	2,457	3,071	3,685				
0,407	0,569	0,710	1,517	2,022	2,528	3,160	3,791				

Calculation of bent elements with rectangular or flanged section PC60 \& $\mathrm{f}_{\mathrm{ek}} \leq 50 \mathrm{MPa}$

Table (2)b
$\mathrm{f}_{\mathrm{y} \mathrm{d}}=350 \mathrm{MPa}$; $\mathrm{y}_{\mathrm{ma}}=0,676$

$\mu=\frac{M_{E d}}{b^{2} d^{2} f_{o d}}$			$\omega=\frac{A_{2}}{b d f_{c d}}$		$A_{3}=\omega b d \frac{f_{c d}}{f_{y d}}=\frac{p}{100} b d ; M_{R d}=\mu b d^{2} f_{c d}$						
μ	ω	ξ	C12	C16	C20	C25	C30	C35	C40	C45	C50
			reinforcement percentage $p=1004_{*} / \mathrm{bd}$								
0,01	0,010	0,013	0,023	0,031	0,038	0,045	0,057	0,057	0,077	0,055	0,055
0,02	0,020	0,025	0,045	0,052	0,077	0,095	0,115	0,135	0,154	0,173	0,192
0,03	0,030	0,038	0,070	0,093	0,116	0,145	0,174	0,203	0,232	0,261	0,290
0,04	0,041	0,051	0,093	0,124	0,156	0,194	0,233	0,272	0,311	0,350	0,369
0,05	0,051	0,054	0,117	0,155	0,195	0,244	0,293	0,342	0,391	0,440	0,439
0,05	0,052	0,077	0,142	0,189	0,235	0,295	0,354	0,413	0,472	0,531	0,590
0,07	0,073	0,091	0,166	0,221	0,277	0,345	0,415	0,484	0,553	0,623	0,692
0,03	0,083	0,104	0,191	0,254	0,318	0,398	0,477	0,557	0,635	0,716	0,795
0,09	0,094	0,118	0,216	0,288	0,360	0,450	0,540	0,630	0,720	0,810	0,900
0,10	0,105	0,132	0,241	0,322	0,402	0,503	0,603	0,704	0,804	0,905	1,005
0,11	0,117	0,145	0,267	0,355	0,445	0,556	0,653	0,779	0,890	1,001	1,113
0,12	0,123	0,160	0,293	0,391	0,438	0,611	0,733	0,855	0,977	1,099	1,221
0,13	0,140	0,175	0,319	0,425	0,532	0,656	0,799	0,932	1,065	1,198	1,331
0,14	0,151	0,189	0,345	0,452	0,577	0,721	0,865	1,010	1,154	1,298	1,443
0,15	0,163	0,204	0,373	0,498	0,622	0,778	0,933	1,089	1,244	1,400	1,556
0,16	0,175	0,219	0,401	0,534	0,658	0,835	1,002	1,169	1,395	1,503	1,670
0,17	0,183	0,234	0,429	0,572	0,715	0,893	1,072	1,251	1,429	1,608	1,787
0.18	0,200	0,250	0,457	0,610	0,762	0,952	1,143	1,333	1,524	1,714	1,905
0,19	0,213	0,265	0,436	0,643	0,810	1,012	1,215	1,417	1,620	1,822	2,025
0,20	0,225	0,282	0,515	0,687	0,859	1,073	1,288	1,503	1,717	1,932	2,147
0,21	0,238	0,298	0,545	0,727	0,903	1,135	1,352	1,509	1,817	2,044	2,271
0,22	0,252	0,315	0,575	0,767	0,959	1,193	1,438	1,678	1,917	2,157	2,397
0,23	0,265	0,331	0,605	0,008	1,010	1,263	1,515	1,768	2,020	2,273	2,525
0,24	0,279	0,349	0,637	0,850	1,062	1,328	1,594	1,859	2,125	2,390	2,656
0,25	0,293	0,365	0,669	0,893	1,116	1,395	1,674	1,953	2,232	2,511	2,709
0,26	0,307	0,384	0,702	0,936	1,170	1,453	1,755	2,043	2,340	2,633	2,926
0.27	0,322	0,402	0,735	0,931	1,226	1,532	1,839	2,145	2,452	2,758	3,054
0,28	0,337	0,421	0,770	1,026	1,283	1,603	1,924	2,245	2,565	2,886	3,205
0,29	0,352	0,440	0,804	1,073	1,341	1,676	2,011	2,345	2,681	3,017	3,352
0,30	0,353	0,459	0,840	1,120	1,400	1,750	2,100	2,450	2,800	3,150	3,500
0,31	0,384	0,479	0,877	1,169	1,451	1,826	2,192	2,557	2,922	3,288	3,653
0,32	0,400	0,500	0,914	1,219	1,524	1,905	2,285	2,657	3,043	3,429	3,810
0,33	0,417	0.521	0,953	1,271	1,588	1,985	2,382	2,779	3,176	3,573	3,971
0,34	0,434	0,543	0,993	1,324	1,655	2,058	2,482	2,895	3,309	3,723	
0,35	0,452	0,565	1,034	1,378	1,723	2,154	2,584	3,015	3,445	3,877	
0,36	0,471	0,569	1,076	1,435	1,794	2,242	2,691	3,139	3,587		
0,37	0,490	0,613	1,120	1,494	1857	2,334	2,801	3,257	3,734		
0,38	0,510	0,638	1,165	1,555	1,943	2,429	2,915	3,401	3,856		
0,395	0,553	0,675	1,238	1,651	2,054	2,580	3,096	3,612			

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

Table (2) c
Calculation of bent elements with rectangular or flanged section

$\mathrm{f}_{\mathrm{yd}}=348 \mathrm{MPa} ; \zeta_{\text {max }}=0,668$											
$\mu=\frac{M_{E d}}{b d^{2} f_{c d}} ; \omega=\frac{A_{2}}{b d f_{c d}} ; A_{2}=\omega b d \frac{f_{c d}}{f_{y d}}=\frac{p}{100} b d ; M_{R d}=\mu b d^{2} f_{c d}$											
μ			C12	C16	C20 ${ }^{\text {C25 }}$			C35	C40	C45	C50
			reinforcement percentage $P=100 A_{2} / \mathrm{bd}$								
0,02	0,020	0,025	0,045	0,052	0,077	0,097	0,116	0,135	0,155	0,174	0,194
0,03	0,030	0,038	0,070	0,093	0,117	0,145	0,175	0,204	0,234	0,263	0,292
0,04	0,041	0,051	0,094	0,125	0,157	0,195	0,235	0,274	0,313	0,352	0,391
0,05	0.051	0,054	0,118	0,157	0,197	0,245	0,295	0,344	0,393	0,443	0,492
0,05	0,052	0,077	0,142	0,190	0,237	0,297	0,356	0,415	0,475	0,534	0,593
0,07	0,073	0,091	0,167	0,223	0,278	0,343	0,413	0,487	0,557	0,627	0,695
0,08	0,083	0,104	0,192	0,256	0,320	0,400	0,450	0,560	0,640	0,720	0,800
0,09	0,094	0,113	0,217	0,290	0,352	0,453	0,543	0,634	0,724	0,815	0,905
0,10	0,105	0,132	0,243	0,324	0,405	0.505	0,607	0,703	0,809	0,911	1,012
0,11	0,117	0,145	0,269	0,358	0,448	0.550	0,672	0,784	0,895	1,008	1,120
0,12	0,128	0,160	0,295	0,393	0,492	0,614	0,737	0,860	0,983	1,105	1,229
0,13	0,140	0,175	0,321	0,429	0,536	0,670	0,804	0,933	1,072	1,205	1,339
0,14	0,151	0,189	0,348	0,455	0,581	0,725	0,871	1,016	1,161	1,305	1,452
0,15	0,163	0,204	0,376	0,501	0,626	0,783	0,939	1,095	1,252	1,409	1,565
0,16	0,175	0,219	0,403	0,533	0,672	0,840	1,003	1,176	1,345	1,513	1,681
0,17	0,188	0,234	0,431	0,575	0,719	0,899	1,079	1,258	1,438	1,618	1,798
0,18	0,200	0,250	0,450	0,613	0,767	0,958	1,150	1,342	1,533	1,725	1,917
0,19	0,213	0,265	0,459	0,652	0,815	1,019	1,222	1,426	1,690	1,834	2,037
0,20	0,225	0,282	0,518	0,691	0,854	1,080	1,295	1,512	1,728	1,944	2,160
0,21	0,238	0,298	0,543	0,731	0,914	1,142	1,371	1,599	1,828	2,056	2,285
0,22	0,252	0,315	0,579	0,772	0,965	1,205	1,447	1,688	1,929	2,171	2,412
0,23	0,265	0,331	0,610	0,813	1,016	1,271	1,525	1,779	2,033	2,287	2.541
0,24	0,279	0,349	0,641	0,855	1,059	1,336	1,604	1,871	2,138	2,405	2,673
0,25	0,293	0,365	0,674	0,893	1,123	1,403	1,684	1,965	2,245	2,526	2,807
0,25	0,307	0,384	0,707	0,942	1,178	1,472	1,765	2,051	2,355	2,649	2,944
0,27	0,322	0,402	0,740	0,987	1,233	1,542	1,850	2,159	2,457	2,775	3,084
0,28	0,337	0,421	0,774	1,032	1,291	1,613	1,996	2,259	2,581	2,904	3,226
0,29	0.352	0,440	0,809	1,079	1,349	1,606	2,024	2,351	2,698	3,035	3,373
0,30	0,358	0,459	0,845	1,127	1,409	1,761	2,113	2,456	2,818	3,170	3,522
0,31	0,384	0,479	0,882	1,176	1,470	1,838	2,205	2,573	2,941	3,308	3,676
0,32	0,400	0.500	0,920	1,227	1,533	1,917	2,300	2,683	3,057	3,450	3,833
0,33	0,417	0,521	0,959	1,279	1,593	1,998	2,397	2,797	3,195	3,595	3,995
0,34	0,434	0.543	0,999	1,332	1,665	2,081	2,497	2,914	3,390	3,745	
0,35	0.452	0.565	1,040	1,387	1,734	2,167	2,601	3,034	3,457	3,901	
0,36	0,471	0.559	1,083	1,444	1,805	2,256	2,707	3,159	3,610		
0,37	0,490	0,613	1,127	1,503	1,879	2,343	2,818	3,288	3,757		
0,38	0,510	0,638	1,173	1,564	1,955	2,444	2,933	3,422	3,911		
392	531	56	1231	64	O5						

Calculation of bent elements with rectangular or flanged section S 500 \& $\mathrm{f}_{\mathrm{k}} \leq 50 \mathrm{MPR}$

Calculation of bent elements with rectangular or flanged section$5500 \& f_{\mathrm{ck}} \leq 50 \mathrm{MPa}$											
$\mathrm{f}_{\mathrm{yd}}=435 \mathrm{MPa} ; \frac{2}{} \mathbf{4 x}=0,668$											
$\mu=\frac{M_{\mathrm{Ed}}}{b d^{2} f_{c d}} ; \omega=\frac{A_{3}}{b d f_{c d}} ; A_{2}=\omega b d \frac{f_{c d}}{f_{y d}}=\frac{p}{100} b d ; M_{R d}=\mu b d^{2} f_{c d}$											
	\cdots	*	C12	C16	C20	C25	C30	C35	C40	C45	C50
μ	ω	$=$	reinforcement percentage $p=1004 / / \mathrm{dd}$								
0,02	0,020	0,025	0,037	0,050	0,062	0,077	0,093	0,103	0,124	0,139	0,155
0,03	0,030	0,038	0,056	0,075	0,093	0,117	0,140	0,163	0,187	0,210	0,234
0,04	0,041	0.051	0,075	0,100	0,125	0,157	0,188	0.219	0,250	0,282	0,313
0,05	0,051	0,054	0,094	0,125	0,157	0,197	0,235	0,275	0,315	0,354	0,393
0,05	0,052	0,077	0,114	0,152	0,190	0,237	0,285	0,332	0,380	0.427	0,475
0,07	0,073	0,091	0,134	0,173	0,223	0,278	0,334	0,390	0,445	0,501	0,557
0,08	0,083	0,104	0,154	0,205	0,256	0,320	0,384	0,448	0,512	0,576	0,640
0,09	0,094	0,118	0,174	0,232	0,290	0,352	0,435	0,507	0,579	0,652	0,724
0,10	0,105	0,132	0,194	0,259	0,324	0,405	0,485	0,567	0,648	0,723	0,809
0,11	0,117	0,145	0,215	0,287	0,358	0,448	0,537	0,627	0,717	0,805	0,896
0,12	0,128	0,160	0,235	0,315	0,393	0,492	0,590	0,688	0,786	0,885	0,983
0,13	0,140	0,175	0,257	0,343	0,429	0,536	0,643	0,750	0,857	0,954	1,072
0,14	0,151	0,109	0,279	0,372	0,465	0,581	0,697	0,813	0,929	1,045	1,161
0,15	0,163	0,204	0,301	0,401	0,501	0,626	0,751	0,877	1,002	1,127	1,252
0,16	0,175	0,219	0,323	0,430	0,538	0,672	0,807	0,941	1,076	1,210	1,345
0,17	0,188	0,234	0,345	0,450	0.575	0,719	0,863	1,007	1,151	1,294	1,438
0,18	0,200	0,250	0,353	0,491	0,613	0,767	0,920	1,073	1,227	1,380	1,533
0,19	0,213	0,266	0,391	0,522	0,652	0,815	0,978	1,141	1,304	1,457	1,630
0,20	0,225	0,282	0,415	0,553	0,691	0,854	1,037	1,210	1,382	1,555	1,728
0,21	0,238	0,298	0,439	0,585	0,731	0,914	1,097	1,280	1,452	1,645	1,828
0,22	0,252	0,315	0,453	0,617	0,772	0,955	1,158	1,351	1,544	1,737	1,929
0,23	0,265	0,331	0,488	0,651	0,813	1,016	1,220	1,423	1,625	1,830	2,033
0,24	0,279	0,369	0.513	0,684	0,855	1,059	1,283	1,497	1,711	1,924	2,138
0.25	0,293	0,365	0,539	0,719	0,898	1,123	1,347	1,572	1,795	2,021	2,245
0,26	0,307	0,384	0,565	0,754	0,942	1,178	1,413	1,649	1,884	2,120	2,355
0,27	0,322	0,402	0,592	0,789	0,987	1,233	1,490	1,727	1,974	2,220	2,457
0,28	0,337	0,421	0,619	0,825	1,032	1,291	1,549	1,807	2,085	2,323	2,531
0,29	0,352	0,440	0,643	0,863	1,079	1,359	1,619	1,889	2,158	2,428	2,693
0,30	0,358	0,459	0,676	0,902	1,127	1,409	1,691	1,972	2,254	2,595	2,818
0,31	0,384	0,479	0,706	0,941	1,176	1,470	1,764	2,058	2,352	2,647	2,941
0,32	0,400	0.500	0,735	0,981	1,227	1,533	1,840	2,147	2,453	2,760	3,057
0,33	0,417	0,521	0,767	1,023	1,279	1,593	1,918	2,237	2,557	2,877	3,195
0,34	0,434	0,543	0,799	1,086	1,332	1,665	1,998	2,331	2,654	2,997	3,330
0,35	0,452	0,565	0,832	1,110	1,387	1,734	2,080	2,427	2,774	3,121	3,457
0,35	0.471	0.589	0,865	1,155	1,444	1,805	2,165	2,527	2,888	3,249	3,610
0.372	0.490	0.617	0,905	1,207	1.509	1,886	2,263	2,641	3.018	3,395	3,772

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

7.1.2. FAILURE CONDITION

 REINFORCEMENT YIELDING BEFORE CONCRETE CRUSHING

$$
\xi_{\lim }=\frac{\mathrm{x}_{\lim }}{\mathrm{d}}=\frac{3,5}{3,5+1000 \mathrm{f}_{\mathrm{yd}} / \mathrm{E}_{\mathrm{s}}} \leftarrow \text { chp.6: slide } 17
$$

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

Maximum Bearing Capacity Corresponds to the Balance Situation
Starting formula: $\mathrm{M}_{\mathrm{Rd}}=\mu \mathrm{bd}^{2} \mathrm{f}_{\mathrm{cd}}$

$$
\begin{gathered}
\xi=\xi_{\lim } \rightarrow \mu=0,8 \xi(1-0,4 \xi) \\
\mu_{\lim }=0,8 \xi_{\lim }\left(1-0,4 \xi_{\lim }\right) \\
\mathrm{M}_{\mathrm{Rd}, \max }=\mu_{\lim } \mathrm{bd}^{2} \mathrm{f}_{\mathrm{cd}}
\end{gathered}
$$

The Corresponding Tension Area
Starting formula: $\mathrm{A}_{\mathrm{s}}=\frac{\mathrm{M}_{\mathrm{Rd}}}{\mathrm{zf}_{\mathrm{yd}}}$

$$
\begin{gathered}
\xi=\xi_{\lim } \rightarrow z=d-0,4 x=(1-0,4 \xi) d \\
z_{\text {lim }}=\left(1-0,4 \xi_{\text {lim }}\right) d=\zeta_{\text {lim }} d \\
A_{s, \max }=\frac{M_{\text {Rd,max }}}{\zeta_{\lim } \mathrm{df}_{\mathrm{yd}}}
\end{gathered}
$$

Whatever is $A_{s}>A_{s, \text { max }}$:

- no yielding of the steel
- bearing capacity remains the same $\mathbf{M}_{\mathrm{Rd} \text {, max }}$

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

7.1.3. CROSS SECTION DESIGN

DESIGN PURPOSE:

- set the dimensions b and h of the concrete cross section
- calculate the reinforcement, according to the distribution of bending moments
- detailing of the element

STEP 1: CROSS SECTION DIMENSIONS

- by estimation based on robustness
- by calculation according to the bending moment

STEP 2: REQUIRED REINFORCEMENT

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

CROSS SECTION DIMENSION BASED ON ROBUSTNESS (STIFFNESS)

Slab thickness

Floors with	$\boldsymbol{h}_{\boldsymbol{f} \min }$
$-\quad$ one way continuous slab	$l_{\min } / 35$
$-\quad$ two ways continuous slab	$l_{\min } / 45$
Slab thickness must be multiple of 10 mm	

Beam cross section dimension

		Recommended dimensions
Cross section depth	$h_{\text {min }}$	$l / 12$ - girder of antiseismic frames
		$l / 15$ - main elements
		l/20 - joist; beam
	$h_{\text {option }}$	$l /(8 . .12)$ - girder of antiseismic frames; main elements
		$l /(12 . .15)$ - joist; beam
Cross section width, b Additional recommendations for cast-in-situ elements		$b=h /(1,5.3)$-rectangular section
		$b=h /(2 . .3)-$ flanged section
		$b=120,150,180,200 \mathrm{~mm}$, afterwards mutiplu of 50 mm
		h-multiple of 50 mm for $\mathrm{h} \leq 800 \mathrm{~mm}$ h-multiple of 100 mm for $\mathrm{h}>800 \mathrm{~mm}$

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

CALCULATION OF THE DIMENSIONS ACCORDING TO BENDING MOMENT

Input data	Output data
$\mathrm{M}_{\mathrm{Ed}} ; \mathrm{f}_{\mathrm{cd}} ; \mathrm{f}_{\mathrm{yd}} ; \mathrm{c}_{\text {nom }}$	$\mathbf{b}, \mathbf{h}, \mathbf{A}_{\mathrm{s}}, \mathbf{x}$

there is chosen:
b- low influence on section resistance
p - it is a link between three unknowns ($\mathrm{b}, \mathrm{h}, \mathrm{A}_{\mathrm{s}}$)
usual values: $0,25 \ldots 0,60 \%$ for slabs
$\omega=\frac{\mathrm{p}}{100} \frac{\mathrm{f}_{\mathrm{yd}}}{\mathrm{f}_{\mathrm{cd}}} \quad \mu=\omega(1-0,5 \omega)$
table (1)
useful depth d_{rqd}
$\quad=\sqrt{\frac{\mathrm{M}_{\mathrm{Ed}}}{\mu \mathrm{bf}} \mathrm{f}_{\mathrm{cd}}}$
$\mathrm{d}=\mathrm{d}_{\mathrm{rqd}}+\mathrm{d}_{\mathrm{s}} \rightarrow$ rounded according to slide 17
to check ratio $h / b \rightarrow$ slide 17

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

CALCULATION OF THE REINFORCEMENT AREA

$$
\begin{aligned}
& d=h-d_{s} \\
& \mu=\frac{\mathrm{M}_{\mathrm{Ed}}}{\mathrm{bd}^{2} f_{\mathrm{cd}}} \quad \omega=1-\sqrt{1-2 \mu} \\
& \mathrm{~A}_{\mathrm{s}}=\omega \mathrm{table}(1) \frac{\mathrm{f}_{\mathrm{cd}}}{\mathrm{f}_{\mathrm{yd}}} \\
& \mathrm{p}=100 \mathrm{~A}_{\mathrm{s}} / \mathrm{bd}
\end{aligned}
$$

NOTE:

1. Using table (1) the check $\xi \leq \xi_{\text {lim }}$ is implied
2. To check $\mathrm{p} \geq \mathrm{p}_{\text {min }}$ from slide 24

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

7.1.4. CROSS SECTION CHECK

Input data	Output data
$\mathrm{M}_{\mathrm{Ed},} \mathrm{f}_{\mathrm{cd}} ; \mathrm{fyd}_{\mathrm{yd}} ; \mathrm{b} ; \mathrm{h} ; \mathrm{A}_{\mathrm{s}} ; \mathrm{c}_{\mathrm{nom}}$	$\mathrm{M}_{\text {Rd }} \mathrm{x}$

\mathbf{M}_{Rd} calculation by equilibrium conditions

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

M_{Rd} calculation by using table

$$
\begin{aligned}
& d=h-d_{s} \\
& \rho=A_{s} / b d
\end{aligned}
$$

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

Checking the bearing capacity

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

7.1.5. PROVISIONS FOR REINFORCEMENT AREA

Maximum reinforcement percentage corresponds to

$$
\begin{aligned}
& \text { balance situation } \\
& \text { Starting formula: } \xi=1,25 \rho \frac{\mathrm{f}_{\mathrm{yd}}}{\mathrm{f}_{\mathrm{cd}}} \quad \xi=\xi_{\mathrm{lim}} \rightarrow \rho=0,8 \xi \frac{\mathrm{f}_{\mathrm{cd}}}{\mathrm{f}_{\mathrm{yd}}} \\
& \rho=0,8 \xi \frac{\downarrow \mathrm{f}_{\mathrm{cd}}}{\mathrm{f}_{\mathrm{yd}}} \\
& \rho_{\text {max }}=0,8 \xi_{\text {lim }} \frac{f_{c d}}{f_{y d}} \\
& p_{\max }=100 \rho_{\max }=80 \xi_{\lim } \frac{f_{c d}}{f_{y d}} \\
& \mathbf{p}_{\text {max }} \text { values } \\
& \text { - in table (2) } \\
& \text { - EC2: 4\% }
\end{aligned}
$$

Whatever is $\mathbf{p}>\mathrm{p}_{\max }$:

- no yielding of the steel
- bearing capacity remains the same $M_{R d, \max }$

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

Minimum reinforcement percentage is obtained equalizing \mathbf{M}_{Rd} with \mathbf{M}_{cr}

$M_{R d}=f\left(A_{s}\right) \longrightarrow M_{R d}=f(p)$

$$
M_{R d}=M_{c r} \rightarrow p_{\min }
$$

$$
\mathrm{EC} 2: \mathrm{p}_{\min }=26 \frac{\mathrm{f}_{\mathrm{ctm}}}{\mathrm{f}_{\mathrm{yk}}} \geq 0,13 \%
$$

7.2. DOUBLE REINFORCED RECTANGULAR SECTION

COMPRESSION REINFORCEMENT LEADS TO:

- INCREASING OF BEARING CAPACITY
- DECREASING OF COMPRESSED CONCRETE
- INCREASING OF SECTION ROTATION, RESULTING A HIGHER DUCTILITY

sr - simple reinforced
dr - double reinforced

DOUBLE REINFORCEMENT IS USED IN THE FOLLOWING SITUATIONS:

- SIMPLE REINFORCED SECTION IS TO WEAK \& NOTHING CAN BE CHANGED
- THERE ARE ALTERNATING BENDING MOMENTS
- SOMEHOW THERE IS REINFORCEMENT IN COMPRESSED AREA
- IN ANTISEISMIC STRUCTURE EVEN THOUGH NO ALTERNATING BENDING MOMENTS

7.2. DOUBLE REINFORCED RECTANGULAR SECTION

7.2.1. SECTION ANALISYS

7.2. DOUBLE REINFORCED RECTANGULAR SECTION

TENSION REINFORCEMENT YIELDING BEFORE CONCRETE CRUSHING

$$
\xi \leq \xi_{\lim }
$$

STRESS IN COMPRESSION REINFORCEMENT

There is yielding of compression reinforcement if $\varepsilon_{\mathrm{s} 2} \geq \varepsilon_{y d}$

$$
\varepsilon_{\mathrm{s} 2}=\varepsilon_{\mathrm{cu}} \frac{\mathrm{x}-\mathrm{d}_{2 \mathrm{~s}}}{\mathrm{x}} \geq \varepsilon_{\mathrm{yd}}
$$

Steel	PC52	PC60	S400	S500
x_{y}	$1,69 d_{2}$	$1,91 d_{2}$	$1,98 d_{2}$	$2,64 d_{2}$
STAS 10107/0-97	$2,0 d_{2}$			

$$
\begin{array}{ll}
x \geq x_{y} & \sigma_{s 2}=f_{y d} \\
x<x_{y} & \sigma_{s 2}<f_{y d}
\end{array}
$$

-no yielding of compression reinforcement

- procedure in the chapter 6.4 (slide 12) applies
-simplified approach: F_{c} is acting at the level of $F_{s 2}$

7.2. DOUBLE REINFORCED RECTANGULAR SECTION

$$
\begin{aligned}
& \Sigma F=0 \\
& F_{c}+F_{s 2}=F_{s 1} \\
& 0,8 b x f_{c d}+A_{s 2} f_{y d}=A_{s 1} f_{y d} \\
& x=1,25 \frac{\left(A_{s 1}-A_{s 2}\right) f_{y d}}{b f_{c d}} \\
& \xi=1,25 \frac{\left(A_{s 1}-A_{s 2}\right) f_{y d}}{b d f_{c d}}
\end{aligned}
$$

Let's assume $\sigma_{s 2}=f_{y d}$

7.2. DOUBLE REINFORCED RECTANGULAR SECTION

$\Sigma \mathrm{M}=0 \rightarrow$ related to the $\mathrm{A}_{\mathrm{s} 1}$ axis

7.2. DOUBLE REINFORCED RECTANGULAR SECTION

$$
\begin{aligned}
& M_{E d}=F_{c} z+F_{s 2} z_{s} \\
& M_{E d}=0,8 b x f_{c d}(d-0,4 x)+A_{s 2} f_{y d}\left(d-d_{s 2}\right) \\
& M_{E d}=b d^{2} f_{c d} 0,8 \xi(1-0,4 \xi)+A_{s 2} f_{y d}\left(d-d_{s 2}\right) \\
& M_{E d}=\underbrace{\mu d^{2} f_{c d}+A_{s 2} f_{y d}\left(d-d_{s 2}\right)}_{M_{a}} \underbrace{}_{M_{b}} \\
& M_{R d}=\mu b d^{2} f_{c d}+A_{s 2} f_{y d}\left(d-d_{s 2}\right)
\end{aligned}
$$

Let's assume $\sigma_{s 2}=f_{y d}$

,

ΔM
increasing of the bearing
capacity due to
compression reinforcement

7.2. DOUBLE REINFORCED RECTANGULAR SECTION

7.2.2. CROSS SECTION DESIGN

CASE (1)
CONSEQUENCE OF WEAK RECTANGULAR
SIMPLE REINFORCED SECTION

CASE (2)
THERE IS REINFORCEMENT IN THE COMPRESSION ZONE

7.2. DOUBLE REINFORCED RECTANGULAR SECTION

CASE (1) - WEAK RECTANGULAR SIMPLE REINFORCED SECTION

- $d=h-d_{s 1}$

Input data	Output data
$\mathrm{M}_{\mathrm{Ed}} ; \mathrm{f}_{\mathrm{cd}} ; \mathrm{f}_{\mathrm{yd}} ; \mathrm{b}, \mathrm{h} ; \mathrm{c}_{\mathrm{nom}}$	$\mathrm{A}_{\mathrm{s} 1} ; \mathrm{A}_{\mathrm{s} 2}$

- $=\frac{\mathrm{M}_{\mathrm{Ed}}}{\mathrm{bd}^{2} \mathrm{f}_{\mathrm{cd}}}>\lim \rightarrow$ section does not resist to M_{Ed}

- simple reinforced cross section can withstand bending moment $M_{\text {lim }}=\mu_{\text {lim }} b d^{2} f_{c d}$
- $\Delta \mathrm{M}=\mathrm{M}_{\mathrm{Ed}}-\mathrm{M}_{\text {lim }}$
- compression bars $\mathrm{A}_{\mathrm{s} 2}$ are required to increase resisting bending moment
- $A_{s 2}=\frac{\Delta M}{f_{y d}\left(d-d_{s 2}\right)}$
- for equilibrium of internal forces \rightarrow a corresponding amount of steel must be added to the tension reinforcement $\mathrm{A}_{\text {slim }}$ (provided for $\mathrm{M}_{\text {lim }}$)
- $A_{s 1}=A_{\text {slim }}+A_{s 2}$
- $A_{s l}=\frac{M_{\text {lim }}}{z_{\text {lim }} f_{y d}}+\frac{\Delta M}{\left(d-d_{s 2}\right) f_{y d}}=\frac{1}{f_{y d}}\left(\frac{\mathrm{M}_{\text {lim }}}{\mathrm{z}_{\text {lim }}}+\frac{\Delta \mathrm{M}}{\left(\mathrm{d}-\mathrm{d}_{\mathrm{s} 2}\right)}\right) ; \mathrm{z}_{\text {lim }}=\left(1-0,4 \xi_{\text {lim }}\right) \mathrm{d}$

NOTE: $\xi=\xi_{\text {lim }} \& x=x_{\text {lim }}>x_{y} \rightarrow$ both reinforcements yield

7.2. DOUBLE REINFORCED RECTANGULAR SECTION

CASE (2) - THERE IS REINFORCEMENT IN THE COMPRESSION ZONE

Input data	Output data
$\mathrm{M}_{\mathrm{Ed}} ; \mathrm{f}_{\mathrm{cd}} ; \mathrm{f}_{\mathrm{yd}} ; \mathrm{A}_{\mathrm{s} 2} ; \mathrm{b} ; \mathrm{h} ; \mathrm{c}_{\text {nom }}$	$\mathrm{A}_{\mathrm{s} 1} ; \mathrm{x}$

- $\mathrm{d}=\mathrm{h}-\mathrm{d}_{\mathrm{s} 1}$
- $\mu=\frac{M_{E d}-A_{s 2} f_{y d}\left(d-d_{s 2}\right)}{{b d^{2} f_{c d}}^{\text {f }}}$

- a) $\mu \leq \mu_{\text {lim }}$ is the same like $\xi \leq \xi_{\text {lim }} \rightarrow A_{\text {s } 1}$ yields
- from table (1) $\rightarrow \xi ; \omega$
- if $x=\xi d \geq x_{y} \rightarrow A_{s 2}$ yields; $A_{s 1}=A_{s a}+A_{s 2}=\omega b d \frac{f_{c d}}{f_{y d}}+A_{s 2}$
- if $x=\xi d<x_{y} \rightarrow A_{s 2}$ does not yield simplified approach: F_{c} is located at the level of $\mathrm{A}_{\mathrm{s} 2}$ $\Sigma \mathrm{M}=0 \rightarrow$ related to the $\mathrm{A}_{\mathrm{s} 2}$ axis:
$M_{E d}=A_{s 1} f_{y d} z_{s}=A_{s 1} f_{y d}\left(d-d_{s 2}\right)$

$$
\mathrm{A}_{\mathrm{s} 1}=\frac{\mathrm{M}_{\mathrm{Ed}}}{\mathrm{f}_{\mathrm{yd}}\left(\mathrm{~d}-\mathrm{d}_{\mathrm{s} 2}\right)}
$$

- b) if $\mu<0 \rightarrow A_{s 2}$ is too strong (similar to $x<x_{y}$); previous relation applies
- c) if $\mu>\mu_{\text {lim }} \rightarrow A_{\text {s2 }}$ is too is weak; calculation according to CASE (1) is required

7.2. DOUBLE REINFORCED RECTANGULAR SECTION

7.2.3. CROSS SECTION CHECK

Input data	Output data
$\mathrm{M}_{\mathrm{Ed}} ; \mathrm{f}_{\mathrm{cd}} ; \mathrm{f}_{\mathrm{yd}} ; \mathrm{A}_{\mathrm{s} 1} ; \mathrm{A}_{\mathrm{s} 2} ; \mathrm{b} ; \mathrm{h} ; \mathrm{c}_{\text {nom }}$	$\mathrm{M}_{\text {Rd }} ; \mathrm{x}$

- $\mathrm{x}=\frac{\left(\mathrm{A}_{\mathrm{s} 1}-\mathrm{A}_{\mathrm{s} 2}\right) \mathrm{f}_{\mathrm{yd}}}{0,8 \mathrm{bf}_{\mathrm{cd}}} \leq \xi_{\text {lim }} \mathrm{d}$
- if $x_{y} \leq x \leq x_{\text {lim }} \rightarrow \xi=x / d \rightarrow$ table (1) $\rightarrow \mu: M_{R d}=\mu b d^{2} f_{c d}+A_{s 2} f_{y d}\left(d-d_{s 2}\right)$
- if $\mathrm{x}<\mathrm{x}_{\mathrm{y}} \rightarrow \mathrm{A}_{\mathrm{s} 2}$ does not yield \rightarrow simplified approach: $\mathrm{M}_{\mathrm{Rd}}=\mathrm{A}_{\mathrm{si} 1} \mathrm{f}_{\mathrm{yd}}\left(\mathrm{d}-\mathrm{d}_{\mathrm{s} 2}\right)$
- if $x>x_{\text {lim }} \rightarrow A_{s 1}$ is too strong: $M_{R d}=\mu_{\text {lim }} b d^{2} f_{c d}+A_{s 2} f_{y d}\left(d-d_{s 2}\right)$
- $\mathrm{M}_{\mathrm{Ed}} \leq \mathrm{M}_{\mathrm{Rd}}$?

7.3. SIMPLE REINFORCED FLANGED SECTION

7.3.1. EFFECTIVE WIDTH OF FLANGES

THE DIFFERENCE IN THE RIGIDITIES OF THE WEB AND FLANGES LEADS TO NONUNIFORM DITRIBUTION OF COMPRESSIVE STRESSES

7.3. SIMPLE REINFORCED FLANGED SECTION

$b_{\text {eff }}=b_{\text {eff1 }}+b_{w}+b_{\text {eff2 }} \leq b$
$b_{\text {eff } 1}=0,2 b_{1}+0,1 \ell_{0}$
$b_{\text {eff2 }}=0,2 b_{2}+0,1 \ell_{0}$
$\mathrm{b}_{\text {eff } 1} \leq \mathrm{b}_{1}$
$\mathrm{b}_{\text {eff } 2} \leq \mathrm{b}_{2}$

7.3. SIMPLE REINFORCED FLANGED SECTION

7.3.2. EXTENSION OF THE BLOCK STRESS

$$
\begin{array}{ll}
\Sigma \mathrm{F}=0 & \mathrm{~F}_{\mathrm{cf}}=\mathrm{F}_{\mathrm{sf}} \\
& \mathrm{~F}_{\mathrm{cf}}=\mathrm{b}_{\mathrm{eff}} \mathrm{~h}_{\mathrm{f}} \mathrm{f}_{\mathrm{cd}} \\
& \mathrm{~F}_{\mathrm{sf}}=\mathrm{A}_{\mathrm{sf}} \mathrm{f}_{\mathrm{yd}}
\end{array}
$$

$$
A_{s f}=b_{\text {eff }} h_{f} \frac{f_{c d}}{f_{y d}}
$$

$\Sigma \mathrm{M}=0 \rightarrow$ related to the A_{sf} axis
$M_{f}=b_{\text {eff }} h_{f} f_{c d}\left(d-0,5 h_{f}\right)$

7.3. SIMPLE REINFORCED FLANGED SECTION

Design	Check	
$\mathbf{M}_{E d} \leq \mathbf{M}_{\mathbf{f}}$	$\mathbf{A}_{\mathbf{s}} \leq \mathbf{A}_{\mathbf{f}}$	Block stress in the flange $\mathbf{0 , 8 x} \leq \mathrm{h}_{\mathbf{f}}$
$\mathbf{M}_{\mathrm{Ed}}>\mathbf{M}_{\mathbf{f}}$	$\mathbf{A}_{\mathbf{s}}>\mathbf{A}_{\mathbf{f}}$	Block stress in the web $\mathbf{0 , 8 x}>\mathrm{h}_{\mathbf{f}}$

7.3. SIMPLE REINFORCED FLANGED SECTION

7.3.3. CROSS SECTION WITH BLOCK STRESS IN THE FLANGE

- concrete below the neutral axis is cracked
- real shape does not matter
- calculation \rightarrow rectangular section b \& h

7.3. SIMPLE REINFORCED FLANGED SECTION

7.3.4. CROSS SECTION WITH BLOCK STRESS IN THE WEB

7.3. SIMPLE REINFORCED FLANGED SECTION

7.3.4. CROSS SECTION WITH BLOCK STRESS IN THE WEB

$$
\Sigma \mathrm{F}=0
$$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{s}} \\
& \mathrm{~F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{ca}}+\mathrm{F}_{\mathrm{cb}}=0,8 \mathrm{bxf} \mathrm{f}_{\mathrm{cd}}+\left(\mathrm{b}-\mathrm{b}_{\mathrm{w}}\right) h_{\mathrm{f}} \mathrm{f}_{\mathrm{cd}} \\
& \mathrm{~F}_{\mathrm{s}}=\mathrm{F}_{\mathrm{sa}}+\mathrm{F}_{\mathrm{sb}}=\left(\mathrm{A}_{\mathrm{sa}}+\mathrm{A}_{\mathrm{sb}}\right) \mathrm{f}_{\mathrm{yd}}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{yd}}
\end{aligned}
$$

$$
x=\frac{A_{s} f_{y d}-\left(b-b_{w}\right) h_{f} f_{c d}}{0,8 b_{w} f_{c d}} \rightarrow x=1,25\left(\frac{A_{s} f_{y d}}{b_{w} f_{c d}}-\frac{b-b_{w}}{b_{w}} h_{f}\right)
$$

$$
\xi=1,25\left(\frac{\mathrm{~A}_{\mathrm{s}} \mathrm{f}_{\mathrm{yd}}}{\mathrm{~b}_{\mathrm{w}} \mathrm{df}_{\mathrm{cd}}}-\frac{\mathrm{b}-\mathrm{b}_{\mathrm{w}}}{\mathrm{~b}_{\mathrm{w}} \mathrm{~d}} \mathrm{~h}_{\mathrm{f}}\right)
$$

7.3. SIMPLE REINFORCED FLANGED SECTION

$\Sigma \mathrm{M}=\mathrm{O} \rightarrow$ related to the A_{s} axis

$M_{E d}=F_{c a} z+F_{c b}\left(d-0,5 h_{f}\right)$
$\mathrm{M}_{\mathrm{Ed}}=\underbrace{\mu \mathrm{b}_{\mathrm{w}} \mathrm{d}^{2} \mathrm{f}_{\mathrm{cd}}+\left(\mathrm{b}-\mathrm{b}_{\mathrm{w}}\right) \mathrm{h}_{\mathrm{f}}\left(\mathrm{d}-0,5 \mathrm{~h}_{\mathrm{f}}\right) \mathrm{f}_{\mathrm{cd}}}_{\text {Resisting bending moment }}$
$M_{R d}=\mu b_{w} d^{2} f_{c d}+\left(b-b_{w}\right) h_{f}\left(d-0,5 h_{f}\right) f_{c d}$

7.3. SIMPLE REINFORCED FLANGED SECTION

7.3.4.1. CROSS SECTION DESIGN

Input data	Output data
$\mathrm{M}_{\mathrm{Ed}} ; \mathrm{f}_{\mathrm{cd}} ; \mathrm{f}_{\mathrm{yd}} ; \mathrm{b}_{\mathrm{w}} ; \mathrm{b} ; \mathrm{h} ; \mathrm{h}_{\mathrm{f}}$	$\mathrm{A}_{\mathrm{s}} ; \mathrm{x}$

$A_{s b}=\left(b-b_{w}\right) h_{f} \frac{f_{c d}}{f_{y d}}$
$M_{b}=\left(b-b_{w}\right) h_{f}\left(d-0,5 h_{f}\right) f_{c d}$
$M_{a}=M_{E d}-M_{b}$
$\mu=\frac{M_{E d}}{\mu b_{w} d^{2} f_{c d}} \quad$ table $(1) \rightarrow \omega \rightarrow \quad A_{s a}=\omega b_{w} d \frac{f_{c d}}{f_{y d}}$
$A_{s}=\omega b_{w} d \frac{f_{c d}}{f_{y d}}+\left(b-b_{w}\right) h_{f} \frac{f_{c d}}{f_{y d}}$

NOTE: if $\mu>\mu_{\text {lim }}$ double reinforcing is required

7.3. SIMPLE REINFORCED FLANGED SECTION

7.3.4.2. CROSS SECTION CHECK

Input data	Output data
$\mathrm{M}_{\mathrm{Ed}} ; \mathrm{f}_{\mathrm{c} d} ; \mathrm{f}_{\mathrm{yd}} ; \mathrm{b}_{\mathrm{w}} ; \mathrm{A}_{\mathrm{s}} ; \mathrm{b} ; \mathrm{h} ; \mathrm{h}_{\mathrm{f}}$	$\mathrm{M}_{\mathrm{Rd}} ; \mathrm{x}$

$A_{s b}=\left(b-b_{w}\right) h_{f} \frac{f_{c d}}{f_{y d}}$
$\mathrm{M}_{\mathrm{b}}=\mathrm{A}_{\mathrm{sb}} \mathrm{f}_{\mathrm{yd}}\left(\mathrm{d}-0,5 \mathrm{~h}_{\mathrm{f}}\right)$
$A_{s a}=A_{s}-A_{s b}$
$\omega=\frac{\mathrm{A}_{\mathrm{sa}}}{\mathrm{b}_{\mathrm{w}} \mathrm{d}} \frac{\mathrm{f}_{\mathrm{yd}}}{\mathrm{f}_{\mathrm{cd}}} \quad$ table $(1) \rightarrow \mu \rightarrow \quad \mathrm{M}_{\mathrm{a}}=\mu \mathrm{b}_{\mathrm{w}} \mathrm{d}^{2} \mathrm{f}_{\mathrm{cd}}$
$M_{R d}=\mu b_{w} d^{2} f_{c d}+A_{s b} f_{y d}\left(d-0,5 h_{f}\right)$
$\mathrm{M}_{\mathrm{Ed}} \leq \mathrm{M}_{\mathrm{Rd}}$?

NOTE: if $\mu>\mu_{\text {lim }} \rightarrow \mathrm{M}_{\mathrm{a}}=\mathrm{M}_{\text {lim }}$

7.4. DOUBLE REINFORCED FLANGED SECTION

7.4.1. EXTENSION OF THE BLOCK STRESS

Formulas from slide 37 are completed with contribution of compression reinforcement $\mathrm{A}_{\mathrm{s} 2}$

$$
\begin{gathered}
\mathrm{A}_{\mathrm{sf}}=\mathrm{bh}_{\mathrm{f}} \frac{\mathrm{f}_{\mathrm{cd}}}{\mathrm{f}_{\mathrm{yd}}}+\mathrm{A}_{\mathrm{s} 2} \\
\mathrm{M}_{\mathrm{f}}=\mathrm{bh}_{\mathrm{f}} \mathrm{f}_{\mathrm{cd}}\left(\mathrm{~d}-0,5 \mathrm{~h}_{\mathrm{f}}\right)+\mathrm{A}_{\mathrm{s} 2}\left(\mathrm{~d}-\mathrm{d}_{2}\right)
\end{gathered}
$$

7.4. DOUBLE REINFORCED FLANGED SECTION

7.4.2. CROSS SECTION WITH BLOCK STRESS IN THE WEB

- concrete below the neutral axis is cracked
- real shape does not matter
- calculation \rightarrow rectangular section b \& h

7.4. DOUBLE REINFORCED FLANGED SECTION

7.4.3. CROSS SECTION WITH BLOCK STRESS IN THE WEB

COMBINATION OF THE PROCEDURES OF CHAPTERS 7.2 AND 7.3

