7. BENT ELEMENTS

BENT ELEMENT • LINEAR: JOIST / BEAM / GIRDER (US) • SLAB

	WIKIPEDIA	CAMBRIDGE DICTIONARY	BBC DICTIONARY	OXFORD DICTIONARY
Joist SE grinda	Horizontal supporting members that run from wall to wall, wall to beam, or beam to beam to support a ceiling, roof or floor	A long thick piece of wood, steel or concrete which is used in a buildings to support a floor or ceiling	Long , thick piece of wood, metal or concrete that is used in buildings or other structures, especially to support a floor or ceiling	A length of timber or steel supporting part of the structure of a building, typically arranged in parallel series to support a floor or ceiling
Beam SE grinda	Structural element that is capable of withstanding load primarily by resisting bending	A long thick piece of wood, metal or concrete, especially used to support weight in a building or other structure	Long thick bar of wood, metal or concrete, especially one which is used to support the roof of a building	Long, sturdy piece of squared timber or metal used to support the roof or floor of a building
Girder ME rigla	The main horizontal support of a structure which supports smaller beams	A long thick piece of steel or concrete, etc. which support a roof, floor, bridges or other large structure	Long thick piece of steel or iron that is used in the frameworks of building and bridges	Large iron or steel beam or compound structure used for building bridges and the framework of large buildings

SE - secondary element

ME - main element

7. BENT ELEMENTS

BEAM

 $\ell \geq 3h$; usual $\,\ell/h = 8...10$

$\begin{array}{l} \text{STATIC ANALISYS} \ \rightarrow \ M_{\text{Ed}}, N_{\text{Ed}}, V_{\text{Ed}} \\ M_{\text{Ed}} \ \& \ N_{\text{Ed}} \ \rightarrow \ \text{BENDING WITH AXIAL FORCE} \\ \text{SR EN 1998 \& P100: } N_{\text{Ed}} \leq 0, 1 A_{\text{c}} f_{\text{cd}} \ \rightarrow \ \text{axial force may be neglected} \end{array}$

SLAB

 $\ell_{\min} \ge 5h_{slab}$

7. BENT ELEMENTS

7.1. SIMPLE REINFORCED RECTANGULAR SECTION

7.2. DOUBLE REINFORCED RECTANGULAR SECTION

7.3. SIMPLE REINFORCED FLANGED SECTION

7.4. DOUBLE REINFORCED FLANGED SECTION

EQUILIBRIUM CONDITIONS WILL BE ACHIVED BY THE EQULISATION OF THE ACTION EFFECTS WITH THE RESISTING INTERNAL FORCES

$$\begin{split} &\Sigma \mathsf{F} = \mathbf{0} \\ &F_c = F_s \ \ \rightarrow \ \ 0.8bxf_{cd} = A_sf_{yd} \\ &x = 1,25\frac{A_sf_{yd}}{bf_{cd}} \quad \text{with} \ \ \xi = \frac{x}{d} \ \ \rightarrow \ \xi = 1,25\frac{A_sf_{yd}}{bdf_{cd}} \\ &\xi = 1,25\frac{A_s}{bd}\cdot\frac{f_{yd}}{f_{cd}} = 1,25\rho\frac{f_{yd}}{f_{cd}} \quad \text{with} \ \ \rho = A_s/bd \ \ \text{reinforcement ratio} \\ &\xi \rightarrow \text{relative value of neutral axis depth} \\ &\omega = \rho\frac{f_{yd}}{f_{cd}} - \text{mechanical ratio of reinforcement} \\ &\xi = 1,25\omega \ \ \rightarrow \ \ \omega = 0,8\xi \end{split}$$

$$\begin{split} & \sum M = 0 \rightarrow \text{related to the } A_s \text{ axis} \\ & M_{Ed} = F_c \ z \\ & z = d - 0.5(0.8 x) = d - 0.4 x \\ & M_{Ed} = 0.8 \ bx \ f_{cd} (d - 0.4 x) \\ & \text{with } x = \xi d \\ & M_{Ed} = 0.8 \ b(\xi d) \ f_{cd} \left[d - 0.4 (\xi d) \right] = b \ d^2 f_{cd} 0.8 \ \xi (1 - 0.4 \xi) \\ & \text{with } \mu = 0.8 \ \xi (1 - 0.4 \xi); \quad \text{but using } \xi = 1.25 \omega \rightarrow \mu = \omega (1 - 0.5 \omega) \end{split}$$

(*)
$$M_{Ed} = \underbrace{\mu b d^2 f_{cd}}_{M_{Rd}}$$

 $\Sigma M = 0 \rightarrow$ related to the A_c axis

$$M_{Ed} = F_{s} z$$

$$M_{Ed} = A_{s} f_{yd} (d - 0.4x)$$

$$M_{Ed} = A_{s} f_{yd} (d - 0.4\xi d) = A_{s} f_{yd} d(1 - 0.4\xi)$$
with $\zeta = \frac{z}{d} = 1 - 0.4\xi$

Stress diagram

already knowing $\xi = 1,25\omega$

 $\zeta = 1 - 0.5\omega \rightarrow \text{relative value of the lever arm}$

$$M_{Ed} = \underbrace{\zeta d A_s f_{yd}}_{M_{Rd}}$$

In conclusion, one of the following relationships may be used for resisting bending moment calculation

$$M_{Rd} = \mu b d^2 f_{cd}$$
$$M_{Rd} = A_s f_{yd} \zeta d$$

	WAYS TO INCREASE RESISTING BENDING MOMENT								
h	h 7 2h	100% same as d 7 ≈110%	110%						
р	1% 7 2%	100%	(6080%)						
f_{yd}	PC52 7 PC60	45%	37%						
f_{cd}	20 MPa 켜 40 MPa	100%	6%						
b	b 켜 2b	100%	6%						

ALL PREVIOUS COEFFICIENTS ARE RELATED BETWEEN THEM BY ρ , f_{cd} & f_{yd}

TWO TYPES OF TABLES MAY BE USED FOR CALCULATIONS:

Table ①: any type of steel & concrete with $f_{ck} \leq 50$ MPa

Table ②: steel PC52, PC60, S400, S500 & concrete with $f_{ck} \le 50$ MPa

22		320389538	fck ≤ 50 M	IPa & any steel
Table 🛈 🚦	μ	ø	Ę	Formulas
	0,05	0,051	0,054	
	0,06	0,062	0,077	
	0,07	0,073	0,091	
	0,08	0,083	0,104	M _{Ed}
	0,09	0,094	0,118	$\mu = \frac{M_{Ed}}{b d^2 f_{cd}}$ $\omega = \frac{A_s}{b d f_{cd}}$ $A_s = \omega b d \frac{f_{cd}}{f_{yd}}$ $M_{Rd} = \mu b d^2 f_{cd}$
Γ	0,10	0,106	0,132	U I red
	0,11	0,117	0,146	
	0,12	0,128	0,160	As
	0,13	0,140	0,175	$\omega = \frac{1}{hdf}$
	0.14	0,151	0,189	our cq
	0,15	0,163	0,204	
	0,16	0,175	0,219	A - abd fed
	0,17	0,188	0,234	$A_{g} = \omega D \mathbf{u} \frac{1}{\mathbf{f}}$
	0,18	0,200	0,250	-yd
	0,19	0,213	0,266	42674 V. 12 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
	0,20	0,225	0,282	$M_{Pd} = \mu b d^2 f_{cd}$
	0,21	0,238	0,298	
	0,22	0,252	0,315	
	0,23	0,265	0,331	
	0,24	0,279	0,349	
	0,25	0,293	0,366	
	0,26	0,307	0,384	
	0,27	0,322	0,402	
	0,28	0,337	0,421	
L	0,29	0,352	0,440	
	0,30	0,368	0,459	
	0,31	0,384	0,479	
1000	0,32	0,400	0,500	
limit	0,33	0,417	0,521	
values	0,34	0,434	0,543	
for	0,35	0,452	0,565	
steel:	0,36	0,471	0,589	
S500	0,372	0,490	0,617	
S400	0,392	0,531	0,668	
PC60	0,395	0,553	0,676	
PC52	0.407	0,569	0,710	

e ②a	<u>а</u>		-		52 & fea							-					2. 1 C C C C C	k ≤ 50 M	16.7 -				ble
				yd = 5	300 MP	2; 5 mo	=0,/10					2				100		and the star	- 285				
	$\mu = \frac{1}{b}$	M _{Ed}	$\omega = \frac{1}{b}$	A, df	A,=ω	$bd \frac{f_{cd}}{f_{cd}}$	$=\frac{p}{100}b$	d;M _R	₃ =μbo	d ² f _{cd}			μ= -	M _{Ed}	;	A, df _{cd} :	A, =0	bd $\frac{f_{cd}}{f_{yd}}$	$=\frac{p}{100}$	od ; M _R	⊿ =µb 0	l ² f _{cd}	
2		cd										μ	G	w	C12	C16	C20	C25	C30	C35		C45	C 50
μ		5	C12	C16	C20	C25	C30 percenta:	C35	C40	C45	C:50	2 C			0.000	0.004			percenta	-			1 0 00
0.00	0.000	0,025	0,054	0.070						0.000	0,224	0,01	0,010	0,013	0,023	0,031	0,038	0,048	0,057	0,067	0,077	0,085	0,096
0,02	0,020			0,072	0,090	0,112	0,135	0,157	0,180	0,202		0,02	0,030	0,038	0,020	0.093	0,116	0,145	0,174	0.203	0.232	0,261	0,290
0,04	0,041	0,051	0,109	0,145	0,181	0,227	0,272	0,318	0,363	0,408	0,454	0.04	0.041	0,051	0.093	0,124	0,156	0,194	0.233	0.272	0,311	0.350	0.389
0,06	0,062	0,077	0,165	0,220	0,275	0,344	0,413	0,482	0,550	0,619	0,688	0,05	0,051	0,064	0,117	0,155	0,195	0,244	0,293	0,342	0,391	0,440	0,489
0,08	0,085	0,104	0,223	0,297	0,371	0,464	0,557	0,649	0,742	0,835	0,928	0,06	0,062	0,077	0,142	0,189	0,236	0,295	0,354	0,413	0,472	0,531	0,590
0,10	0,106	0,132	0,282	0,375	0,469	0,587	0,704	0,821	0,938	1,056	1,173	0,07	0,073	0,091	0,166	0,221	0,277	0,346	0,415	0,484	0,553	0,623	0,692
0,11	0,117	0,146	0,312	0,415	0,519	0,649	0,779	0,909	1,038	1,168	1,298	0,08	0,083	0,104	0,191	0,254	0,318	0,398	0,477	0,557	0,636	0,716	0,795
0,12	0,128	0,160	0,342	0,456	0,570	0,712	0,855	0,997	1,140	1,282	1,425	0,09	0,094	0,118	0,216	0,288	0,360	0,450	0,540	0,630	0,720	0,810	0,900
0,13	0,140	0,175	0,373	0,497	0,621	0,776	0,932	1,087	1,242	1,398	1,553	0,10	0,106	0,132	0,241	0,322	0,402	0,503	0,603	0,704	0,804	0,905	1,005
0,14	0,151	0,189	0,404	0,539	0,673	0,842	1,010	1,178	1,346	1,515	1,683	0,11	0,117 0,128	0,145	0,267	0,355	0,445	0,556	0,668	0,779	0,890	1,001	1,113
0,15	0,163	0,204	0,436	0,581	0,726	0,907	1,089	1,270	1,452	1,633	1,815	0,12	0,120	0,100	0,295	0,391	0,400	0,665	0,799	0,885	1,065	1,198	1,331
0,16	0,175	0,219	0,468	0,624	0,779	0,974	1,169	1,364	1,559	1,754	1,949	0,14	0,151	0,189	0,345	0,452	0,532	0,721	0,865	1,010	1,154	1,298	1,443
0,17	0,188	0,234	0,500	0,667	0,834	1,042	1,251	1,459	1,668	1,876	2,084	0.15	0,163	0.204	0.373	0,498	0.622	0,778	0.933	1,089	1,244	1,400	1,556
0,18	0,200	0,250	0,533	0,711	0,889	1,111	1,333	1,556	1,778	2,000	2,222	0,16	0,175	0,219	0,401	0,534	0,668	0,835	1,002	1,169	1,335	1,503	1,670
0,19	0,213	0,266	0,567	0,756	0,945	1,181	1,417	1,654	1,890	2,126	2,362	0,17	0,188	0,234	0,429	0,572	0,715	0,893	1,072	1,251	1,429	1,608	1,787
0,20	0,225	0,282	0,601	0,801	1,002	1,252	1,503	1,753	2,004	2,254	2,504	0,18	0,200	0,250	0,457	0,610	0,762	0,952	1,143	1,333	1,524	1,714	1,905
0,21	0,238	0,298	0,636	0,848	1,060	1,325	1,589	1,854	2,119	2,384	2,649	0,19	0,213	0,266	0,486	0,648	0,810	1,012	1,215	1,417	1,620	1,822	2,025
0,22	0,252	0,315	0,671	0,895	1,119	1,398	1,678	1,957	2,237	2,517	2,796	0,20	0,225	0,282	0,515	0,687	0,859	1,073	1,288	1,503	1,717	1,932	2,147
0,23	0,265	0,331	0,707	0,943	1,178	1,473	1,768	2,062	2,357	2,652	2,946	0,21	0,238	0,298	0,545	0,727	0,908	1,135	1,352	1,589	1,817	2,044	2,271
0,24	0,279	0,349	0,744	0,992	1,240	1,549	1,859	2,169	2,479	2,789	3,099	0,22	0,252	0,315	0,575	0,767	0,959	1,198	1,438	1,678	1,917 2,020	2,157	2,397
0.25	0,293	0,366	0,781	1,041	1,302	1,627	1,953	2,278	2,603	2,929	3,254	0,23	0,205	0,349	0,606	0,800	1,010	1,203	1,515	1,/00	2,020	2,2/3	2,523
0.26	0,307	0,384	0,819	1,092	1,365	1,707	2,048	2,389	2,730	3,072	3,413	0.25	0.293	0,345	0,669	0,893	1,116	1,395	1,674	1,953	2,120	2,550	2,000
0.27	0,322	0,402	0,858	1,144	1,430	1,788	2,145	2,503	2,860	3,218	3,575	0.25	0,307	0,384	0,702	0,935	1,170	1,463	1,755	2,048	2,340	2,633	2,926
0.28	0,337	0,421	0,898	1,197	1,496	1,870	2,245	2,619	2,993	3,367	3,741	0.27	0,322	0,402	0,735	0,981	1,226	1,532	1,839	2,145	2,452	2,758	3.064
0.29	0,352	0,440	0,938	1,251	1,564	1,955	2,346	2,737	3,128	3,519	3,910	0,28	0,337	0,421	0,770	1,025	1,283	1,603	1,924	2,245	2,565	2,886	3,208
0.30	0,368	0,459	0,980	1,307	1,634	2,042	2,450	2,859	3,267	3,675	0,010	0,29	0,352	0,440	0,804	1,073	1,341	1,676	2,011	2,345	2,681	3,017	3,352
0,31	0,384	0,479	1,023	1,364	1,705	2,131	2,557	2,983	3,409	3,836		0,30	0,368	0,459	0,840	1,120	1,400	1,750	2,100	2,450	2,800	3,150	3,500
0,32	0,400	0,500	1,067	1,422	1,778	2,222	2,667	3,111	3,556	4,000		0,31	0,384	0,479	0,877	1,169	1,461	1,826	2,192	2,557	2,922	3,288	3,653
0,32	0,400	0,500	1,112	1,482	1,853	2,316	2,779	3,243	3,706	4,000		0,32	0,400	0,500	0,914	1,219	1,524	1,905	2,285	2,667	3,048	3,429	3,810
0,33	0,417	0,521	1,158	1,402	1,035	2,413	2,895	3,378	3,861			0,33	0,417	0,521	0,953	1,271	1,588	1,985	2,382	2,779	3,176	3,573	3,971
		0,565				2,513		3,518	3,051			0,34	0,434	0,543	0,993	1,324	1,655	2,068	2,482	2,895	3,309	3,723	
0,35	0,452		1,206	1,608	2,010		3,015					0,35	0,452 0,471	0,565	1,034	1,378	1,723	2,154	2,564	3,015	3,445	3,877	1
0,36	0,471	0,589	1,256	1,674	2,093	2,616	3,139	3,662				0.37	0,490	0,503	1,120	1,494	1857	2,334	2,801	3,257	3,734		
0,37	0,490	0,613	1,307	1,743	2,178	2,723	3,267	3,812				0.38	0,510	0.638	1,165	1,555	1,943	2,429	2,915	3,401	3,886		
0,38	0,510	0,638	1,360	1,814	2,267	2,834	3,401	3,967				0.395	0,553	0,676	1,238	1,651	2,064	2,580	3,096	3,612	0,000		
0,39	0,531	0,664	1,416	1,888	2,360 2,457	2,950	3,540														355		

	С			bent eler S4		a;≿_max=						2						<u>s ≤ 50 M</u> a; ≿ _{mac} =		11000			16
	μ=	M _{Ed} bd ² f _{cd}	: co =	A ₃ b df _{cd} :	Sector Sector	CALL OF THE	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	d;M _R	_d =μb d	l ² f _{cd}			μ=	$rac{\mathrm{M}_{\mathrm{Ed}}}{\mathrm{b}\mathrm{d}^{2}\mathrm{f}_{\mathrm{cd}}}$;	A, bdf _{cd} ;		1000		d;M _R	_d =µb d	l ² f _{od}	
μ	a	\$	C12	C16	C20 reinfo	C25 rcement	C30 percenta	C35 ze p = 10	C40 0A,/bd	C45	C:50	μ	G	\$	C12	C16	C20 reinfo	C25 rcement	C:30 percenta	C35 ge p = 10		C45	C:50
0,02	0,020	0,025	0,045	0,062	0,077	0,097	0,116	0,135	0,155	0,174	0,194	0,02	0,020	0,025	0,037	0,050	0,052	0,077	0,093	0,108	0,124	0,139	0,155
0.03	0.030	0,038	0,070	0,093	0,117	0,145	0,175	0,204	0,234	0,263	0,292	0,03	0,030	0,038	0,056	0,075	0,093	0,117	0,140	0,163	0,187	0,210	0,234
0,04	0,041	0,051	0,094	0,125	0,157	0,195	0,235	0,274	0,313	0,352	0,391	0,04	0,041	0,051	0,075	0,100	0,125	0,157	0,188	0,219	0,250	0,282	0,313
0,05	0,051	0,064	0,118	0,157	0,197	0,245	0,295	0,344	0,393	0,443	0,492	0,05	0,051	0,054	0,094	0,126	0,157	0,197	0,235	0,275	0,315	0,354	0,393
0,05	0,062	0,077	0,142	0,190	0,237	0,297	0,356	0,415	0,475	0,534	0,593	0,06	0,062	0,077	0,114	0,152	0,190	0,237	0,285	0,332	0,380	0,427	0,475
0,07	0,073	0,091	0,167	0,223	0,278	0,348	0,418	0,487	0,557	0,627	0,696	0,07	0,073	0,091	0,134	0,178	0,223	0,278	0,334	0,390	0,446	0,501	0,557
0,08	0,083	0,104	0,192	0,256	0,320	0,400	0,480	0,560	0,640	0,720	0,800	0,08	0,083	0,104	0,154	0,205	0,256	0,320	0,384	0,448	0,512	0,576	0,640
0,09	0,094	0,118	0,217	0,290	0,362	0,453	0,543	0,634	0,724	0,815	0,905	0,09	0,094	0,118	0,174	0,232	0,290	0,362	0,435	0,507	0,579	0,652	0,724
0,10	0,106	0,132	0,243	0,324	0,405	0,506	0,607	0,708	0,809	0,911	1,012	0,10	0,105	0,132	0,194	0,259	0,324	0,405	0,485	0,567	0,648	0,728	0,809
0,11	0,117	0,145	0,269	0,358	0,448	0,560	0,672	0,784	0,896	1,008	1,120	0,11	0,117	0,145	0,215	0,287	0,358	0,448	0,537	0,627	0,717	0,806	0,896
0,12	0,128	0,160	0,295	0,393	0,492	0,614	0,737	0,850	0,983	1,105	1,229	0,12	0,128	0,160	0,236	0,315	0,393	0,492	0,590	0,688	0,785	0,885	0,983
0,13	0,140	0,175	0,321	0,429	0,536	0,670	0,804	0,938	1,072	1,205	1,339	0,13	0,140	0,175	0,257	0,343	0,429	0,535	0,643	0,750	0,857	0,964	1,072
0,14	0,151	0,189	0,348	0,465	0,581	0,726	0,871	1,016	1,161	1,306	1,452	0,14	0,151	0,189	0,279	0,372	0,465	0,581	0,697	0,813	0,929	1,045	1,161
0,15	0,163	0,204	0,376	0,501	0,626	0,783	0,939	1,095	1,252	1,409	1,565	0,15	0,163	0,204	0,301	0,401	0,501	0,626	0,751	0,877	1,002	1,127	1,252
0,16	0,175	0,219	0,403	0,538	0,672	0,840	1,008	1,175	1,345	1,513	1,681	0,16	0,175	0,219	0,323	0,430	0,538	0,672	0,807	0,941	1,076	1,210	1,345
0,17	0,188	0,234	0,431	0,575	0,719	0,899	1,079	1,258	1,438	1,618	1,798	0,17	0,188	0,234	0,345	0,460	0,575	0,719	0,863	1,007	1,151	1,294	1,438
0,18	0,200	0,250	0,460	0,613	0,767	0,958	1,150	1,342	1,533	1,725	1,917	0,18	0,200	0,250	0,368	0,491 0,522	0,613	0,767	0,920	1,073	1,227	1,380	1,533
0,19	0,213	0,266	0,489	0,652	0,815	1,019	1,222	1,426	1,630	1,834	2,037	0,19	0,215	0,200	0,391	0,522	0,691	0,815	1,037	1,210	1,304	1,40/	1,728
0,20	0,225	0,282	0,518	0,691	0,864	1,080	1,296	1,512	1,728	1,944	2,160	0,20	0,225	0,202	0,415	0,585	0,091	0,004	1,037	1,280	1,302	1,645	1,828
0,21	0,238	0,298	0,548	0,731	0,914	1,142	1,371	1,599	1,828	2,055	2,285	0,21	0,250	0,315	0,459	0,565	0,772	0,914	1,158	1,351	1,402	1,040	1,929
0,22	0,252	0,315	0,579	0,772	0,965	1,205	1,447	1,688	1,929	2,171	2,412	0.23	0,265	0,313	0,488	0,651	0,813	1,016	1,220	1,423	1,626	1,830	2,033
0,23	0,265	0,331	0,610	0,813	1,016	1,271	1,525	1,779	2,033	2,287	2,541	0,23	0,200	0,349	0,513	0,684	0,855	1,010	1,220	1,497	1,020	1,934	2,035
0,24	0,279	0,349	0,641	0,855	1,069	1,335	1,604	1,871	2,138	2,405	2,673	0,24	0,275	0,365	0,515	0,004	0,898	1,123	1,203	1,497	1,796	2,021	2,135
0,25	0,293	0,366	0,674	0,898	1,123	1,403	1,684	1,965	2,245	2,526	2,807	0,26	0,307	0,384	0,565	0,754	0,942	1,178	1,413	1,649	1,884	2,120	2,355
0,26	0,307	0,384	0,707	0,942	1,178	1,472	1,765	2,061	2,355	2,649	2,944	0,27	0,322	0,402	0,592	0,789	0,987	1,233	1,480	1,727	1,974	2,220	2,457
0,27	0,322	0,402	0,740	0,987	1,233	1,542	1,850	2,159	2,457	2,775	3,084	0,28	0.337	0,421	0,619	0,826	1,032	1,291	1,549	1,807	2,065	2,323	2,581
0,28	0,337	0,421	0,774	1,032	1,291	1,613	1,935	2,259	2,581	2,904	3,226	0.29	0,352	0,440	0,648	0,863	1,079	1,349	1,619	1,889	2,158	2,428	2,698
0,29	0,352	0,440	0,809	1,079	1,349	1,686	2,024	2,361	2,698	3,035	3,373	0.30	0.368	0,459	0,676	0.902	1,127	1,409	1,691	1,972	2.254	2,535	2.818
0,30	0,368	0,459	0,845	1,127	1,409	1,761	2,113	2,466	2,818	3,170	3,522	0,31	0,384	0,479	0,706	0,941	1,176	1,470	1,764	2,058	2,352	2,647	2,941
0,31	0,384	0,479	0,882	1,176	1,470	1,838	2,205	2,573	2,941	3,308	3,676	0,32	0,400	0,500	0,736	0,981	1,227	1,533	1,840	2,147	2,453	2,760	3,057
0,32	0,400	0,500	0,920	1,227	1,533	1,917	2,300	2,683	3,067	3,450	3,833	0.33	0.417	0,521	0,767	1.023	1,279	1,598	1,918	2,237	2,557	2,877	3,196
0,33	0,417	0,521	0,959	1,279	1,598	1,998	2,397	2,797	3,195	3,596	3,995	0,34	0,434	0,543	0,799	1,055	1,332	1,665	1,998	2,331	2,664	2,997	3,330
0,34	0,434	0,543	0,999	1,332	1,665	2,081	2,497	2,914	3,330	3,746		0.35	0.452	0.565	0,832	1,110	1,387	1,734	2.080	2,427	2,774	3,121	3,457
0,35	0,452	0,565	1,040	1,387	1,734	2,167	2,601	3,034	3,457	3,901		0.36	0,471	0,589	0,866	1,155	1,444	1,805	2,166	2,527	2,888	3,249	3,610
0,36	0,471	0,589	1,083	1,444	1,805	2,256	2,707	3,159	3,610			0.372	0,490	0,617	0.905	1,207	1,509	1,886	2,263	2,641	3,018	3,395	3,772
0,37	0,490	0,613	1,127	1,503	1,879	2,348	2,818	3,288	3,757						-								

7.1.2. FAILURE CONDITION

Maximum Bearing Capacity Corresponds to the Balance Situation

Starting formula: $M_{Rd} = \mu b d^2 f_{cd} \qquad \xi = \xi_{lim} \rightarrow \mu = 0.8 \xi (1-0.4\xi)$ $\mu_{lim} = 0.8\xi_{lim}(1-0.4\xi_{lim})$ $\left| M_{Rd,max} = \mu_{lim} b d^2 f_{cd} \right|$ The Corresponding Tension Area Starting formula: $A_s = \frac{M_{Rd}}{zf_{vd}}$ $\xi = \xi_{\lim} \rightarrow z = d - 0, 4x = (1 - 0, 4\xi)d$ $z_{lim} = (1-0,4\xi_{lim})d = \zeta_{lim}d$ $|A_{s,max} = \frac{M_{Rd,max}}{\zeta_{lim} df_{vd}}|$ Whatever is A_s > A_{s.max}: - no yielding of the steel

- bearing capacity remains the same M_{Rd,max}

15

7.1.3. CROSS SECTION DESIGN

DESIGN PURPOSE:

- set the dimensions b and h of the concrete cross section
- calculate the reinforcement, according to the distribution of bending moments
- detailing of the element

STEP 1: CROSS SECTION DIMENSIONS

- by estimation based on robustness
- by calculation according to the bending moment

STEP 2: REQUIRED REINFORCEMENT

CROSS SECTION DIMENSION BASED ON ROBUSTNESS (STIFFNESS)

Fl	o <mark>ors with</mark>	h _{f min}
	one way continuous slab	l _{min} / 35
1207	two ways continuous slab	l _{min} / 45
Sla	ab thickness must be multiple of 10) mm

Slab thickness

Beam cross section dimension

		Recommended dimensions
Correct	3	l/12 - girder of antiseismic frames
Cross section	h _{min}	l/15 – main elements
depth		l/20 - joist; beam
ucpin	L.	l/(812) – girder of antiseismic frames; main elements
	hoptim	l/(1215)-joist; beam
Cross s	ection	b = h/(1,53) - rectangular section
widt	h, <i>b</i>	b = h/(23) - flanged section
Additiona	al	b = 120, 150, 180, 200 mm, afterwards mutiplu of 50 mm
recomme for cast-in elements	a a substant a substant	h - multiple of 50 mm for h \leq 800 mm h - multiple of 100 mm for h $>$ 800 mm

CALCULATION OF THE DIMENSIONS ACCORDING TO BENDING MOMENT

Input data	Output data
$M_{Ed}; f_{cd}; f_{yd}; c_{nom}$	b, h, A _s , x

there is chosen:

ſ

b - low influence on section resistance

p - it is a link between three unknowns (b, h, A_s)

usual values: 0,25 ... 0,60% for slabs

0,80 ... 1,30% for beams

$$\omega = \frac{p}{100} \frac{r_{yd}}{f_{cd}} \qquad \mu = \omega(1 - 0, 5\omega)$$

$$useful depth d_{rqd} = \sqrt{\frac{M_{Ed}}{\mu b f_{cd}}}$$

d = d_{rqd} + d_s \rightarrow rounded according to slide 17 to check ratio $h/b \rightarrow$ slide 17

CALCULATION OF THE REINFORCEMENT AREA

$$d = h - d_{s}$$

$$\mu = \frac{M_{Ed}}{b d^{2} f_{cd}} \qquad \omega = 1 - \sqrt{1 - 2\mu}$$

$$f_{able} \oplus f_{cd}$$

$$A_{s} = \omega b d \frac{f_{cd}}{f_{yd}}$$

$$p = 100A_{s}/bd$$

NOTE:

- 1. Using table ① the check $< \frac{1}{2} <_{lim}$ is implied
- 2. To check $p \ge p_{min}$ from slide 24

7.1.4. CROSS SECTION CHECK

Input data	Output data	
MEd, fcd; fyd; b; h; As; cnom	M _{Rd} ; x	

M_{Rd} calculation by equilibrium conditions

 M_{Rd} calculation by using table

Checking the bearing capacity

7.1.5. PROVISIONS FOR REINFORCEMENT AREA

Maximum reinforcement percentage corresponds to

p_{max} values - in table ② - EC2: 4%

Whatever is p > p_{max}:

- no yielding of the steel
- bearing capacity remains the same M_{Rd,max}

23

Minimum reinforcement percentage is obtained equalizing M_{Rd} with M_{cr}

COMPRESSION REINFORCEMENT LEADS TO:

- INCREASING OF BEARING CAPACITY
- DECREASING OF COMPRESSED CONCRETE
- INCREASING OF SECTION ROTATION, RESULTING A HIGHER DUCTILITY

DOUBLE REINFORCEMENT IS USED IN THE FOLLOWING SITUATIONS:

- SIMPLE REINFORCED SECTION IS TO WEAK & NOTHING CAN BE CHANGED
- THERE ARE ALTERNATING BENDING MOMENTS
- SOMEHOW THERE IS REINFORCEMENT IN COMPRESSED AREA
- IN ANTISEISMIC STRUCTURE EVEN THOUGH NO ALTERNATING BENDING MOMENTS

7.2.1. SECTION ANALISYS

$$x \ge x_y \quad \sigma_{s2} = f_{yd}$$

x < x_y σ_{s2} < f_{yd}
 •no yielding of compression reinforcement
 •procedure in the chapter 6.4 (slide 12) applies
 •simplified approach: F_c is acting at the level of F_{s2}

$$F_{c} + F_{s2} = F_{s1}$$

$$0,8b \times f_{cd} + A_{s2}f_{yd} = A_{s1}f_{yd}$$

$$x = 1,25 \frac{(A_{s1} - A_{s2})f_{yd}}{bf_{cd}}$$

$$\xi = 1,25 \frac{(A_{s1} - A_{s2})f_{yd}}{bdf_{cd}}$$

 $\Sigma F = 0$

Let's assume $\dagger_{s2} = f_{yd}$

 $\Sigma M = 0 \rightarrow$ related to the A_{s1} axis

7.2.2. CROSS SECTION DESIGN

CASE ① CONSEQUENCE OF WEAK RECTANGULAR SIMPLE REINFORCED SECTION

CASE ② THERE IS REINFORCEMENT IN THE COMPRESSION ZONE

CASE 1 - WEAK RECTANGULAR SIMPLE REINFORCED SECTION

Input data	Output data
M _{Ed} ; f _{cd} ;f _{yd} ; b,h ;c _{nom}	As1; As2

- simple reinforced cross section can withstand bending moment $M_{lim} = \mu_{lim}bd^2f_{cd}$
- $\Delta M = M_{Ed} M_{lim}$
- compression bars A_{s2} are required to increase resisting bending moment
- $A_{s2} = \frac{\Delta M}{f_{yd}(d d_{s2})}$
- for equilibrium of internal forces \rightarrow a corresponding amount of steel must be added to the tension reinforcement A_{slim} (provided for M_{lim})

•
$$A_{s1} = A_{slim} + A_{s2}$$

• $A_{s1} = \frac{M_{lim}}{z_{lim}f_{yd}} + \frac{\Delta M}{(d-d_{s2})f_{yd}} = \frac{1}{f_{yd}} \left(\frac{M_{lim}}{z_{lim}} + \frac{\Delta M}{(d-d_{s2})} \right); z_{lim} = (1 - 0.4\xi_{lim})d$

NOTE: $\xi = \xi_{\lim} \& x = x_{\lim} > x_y \rightarrow \text{ both reinforcements yield}$

CASE 2 - THERE IS REINFORCEMENT IN THE COMPRESSION ZONE

Input data	Output data
M _{Ed} ; f _{cd} ; f _{yd} ; A _{s2} ; b; h; c _{nom}	A _{s1} ; x

•
$$d = h - d_{s1}$$

•
$$\mu = \frac{M_{Ed} - A_{s2}f_{yd}(d - d_{s2})}{b d^2 f_{cd}}$$

$$A_{s2}$$

$$0,8x$$

$$A_{s1}$$

$$A_{sa}$$

$$A_{sa}$$

$$A_{sb} = A_{s2}$$

f

- a) $\mu \le \mu_{\text{lim}}$ is the same like $\xi \le \xi_{\text{lim}} \to A_{s1}$ yields

• if
$$\mathbf{x} = \xi \mathbf{d} \ge \mathbf{x}_{y} \rightarrow \mathbf{A}_{s2}$$
 yields; $\mathbf{A}_{s1} = \mathbf{A}_{sa} + \mathbf{A}_{s2} = \omega \mathbf{b} \mathbf{d} \frac{\mathbf{I}_{cd}}{\mathbf{f}_{yd}} + \mathbf{A}_{s2}$

- if $x = \xi d < x_y \rightarrow A_{s2}$ does not yield simplified approach: F_c is located at the level of A_{s2} $\Sigma M = 0 \rightarrow$ related to the A_{s2} axis: $M_{Ed} = A_{s1}f_{yd}Z_s = A_{s1}f_{yd}(d - d_{s2})$ $A_{s1} = \frac{M_{Ed}}{f_{red}(d - d_{s2})}$
- b) if $\mu < 0 \rightarrow A_{s2}$ is too strong (similar to $x < x_y$); previous relation applies
- c) if $\mu > \mu_{lim} \rightarrow A_{s2}$ is too is weak; calculation according to CASE ① is required

7.2.3. CROSS SECTION CHECK

Input data	Output data
M_{Ed} ; f_{cd} ; f_{yd} ; A_{s1} ; A_{s2} ; b; h; c _{nom}	M _{Rd} ; x

•
$$x = \frac{(A_{s1} - A_{s2})f_{yd}}{0.8bf_{cd}} \le \xi_{lim}d$$

• if $x_y \le x \le x_{lim} \rightarrow \xi = x/d \rightarrow table \oplus \rightarrow \mu$: $M_{Rd} = \mu bd^2 f_{cd} + A_{s2}f_{yd}(d - d_{s2})$
• if $x < x_y \rightarrow A_{s2}$ does not yield \rightarrow simplified approach: $M_{Rd} = A_{s1}f_{yd}(d - d_{s2})$
• if $x > x_{lim} \rightarrow A_{s1}$ is too strong: $M_{Rd} = \mu_{lim} bd^2 f_{cd} + A_{s2}f_{yd}(d - d_{s2})$

• $M_{Ed} \leq M_{Rd}$?

7.3.1. EFFECTIVE WIDTH OF FLANGES

THE DIFFERENCE IN THE RIGIDITIES OF THE WEB AND FLANGES LEADS TO NONUNIFORM DITRIBUTION OF COMPRESSIVE STRESSES

$$\begin{array}{c} b_{eff} = b_{eff1} + b_w + b_{eff2} \leq b \\ b_{eff1} = 0.2b_1 + 0.1 \,\ell_0 \\ b_{eff2} = 0.2b_2 + 0.1 \,\ell_0 \\ b_{eff1} \leq b_1 \\ b_{eff2} \leq b_2 \end{array} \qquad \overbrace{\begin{array}{c} l_0 = 0.85 \,l_1 \\ l_1 \end{array}}^{racc} \overbrace{\begin{array}{c} l_0 = 0.7 \,l_2 \\ l_2 \end{array}}^{racc} \overbrace{\begin{array}{c} l_0 = 0.15 \,l_2 + l_3 \\ l_3 \end{array}}^{racc} \\ i_0 = 0.15 \,l_2 + l_3 \end{array}}$$

 $\Sigma M = 0 \rightarrow$ related to the A_{sf} axis

$$M_{f} = b_{eff} h_{f} f_{cd} (d - 0, 5h_{f})$$

Design	Check	
$M_{Ed} \le M_{f}$	$A_s \le A_f$	Block stress in the flange 0,8x ≤ h _f
$M_{Ed} > M_{f}$	$A_s > A_f$	Block stress in the web 0,8x > h _f

7.3.3. CROSS SECTION WITH BLOCK STRESS IN THE FLANGE

- concrete below the neutral axis is cracked
- real shape does not matter
- calculation \rightarrow rectangular section b & h

7.3.4. CROSS SECTION WITH BLOCK STRESS IN THE WEB

7.3.4. CROSS SECTION WITH BLOCK STRESS IN THE WEB

 $\Sigma M = 0 \rightarrow related to the A_s axis$

7.3.4.1. CROSS SECTION DESIGN

Input data	Output data
$M_{Ed};f_{cd};f_{yd};b_w;b;h;h_f$	A _s ; x

$$\begin{split} A_{sb} &= (b - b_w) h_f \frac{f_{cd}}{f_{yd}} \\ M_b &= (b - b_w) h_f (d - 0.5 h_f) f_{cd} \\ M_a &= M_{Ed} - M_b \\ \mu &= \frac{M_{Ed}}{\mu b_w d^2 f_{cd}} \quad \text{table } \textcircled{1} \rightarrow \omega \rightarrow \quad A_{sa} = \omega b_w d \frac{f_{cd}}{f_{yd}} \\ A_s &= \omega b_w d \frac{f_{cd}}{f_{yd}} + (b - b_w) h_f \frac{f_{cd}}{f_{yd}} \end{split}$$

NOTE: if $\mu > \mu_{lim}$ double reinforcing is required

7.3.4.2. CROSS SECTION CHECK

Input data	Output data
$M_{Ed}; f_{cd}; f_{yd}; b_w; A_s; b; h; h_f$	M _{Rd} ; x

$$\begin{split} A_{sb} &= \left(b - b_w\right) h_f \, \frac{f_{cd}}{f_{yd}} \\ M_b &= A_{sb} f_{yd} \left(d - 0,5 h_f\right) \\ A_{sa} &= A_s - A_{sb} \\ \omega &= \frac{A_{sa}}{b_w d} \frac{f_{yd}}{f_{cd}} \quad \text{table } \oplus \to \mu \to \quad M_a = \mu b_w d^2 f_{cd} \\ M_{Rd} &= \mu b_w d^2 f_{cd} + A_{sb} f_{yd} \left(d - 0,5 h_f\right) \\ M_{Ed} &\leq M_{Rd} \ \end{split}$$

NOTE: if $\mu > \mu_{lim} \rightarrow M_a = M_{lim}$

7.4. DOUBLE REINFORCED FLANGED SECTION

7.4.1. EXTENSION OF THE BLOCK STRESS

Formulas from slide 37 are completed with contribution of compression reinforcement A_{s2}

$$A_{sf} = bh_{f} \frac{f_{cd}}{f_{yd}} + A_{s2}$$
$$M_{f} = bh_{f} f_{cd} (d - 0.5h_{f}) + A_{s2} (d - d_{2})$$

7.4. DOUBLE REINFORCED FLANGED SECTION

7.4.2. CROSS SECTION WITH BLOCK STRESS IN THE WEB

- concrete below the neutral axis is cracked
- real shape does not matter
- calculation \rightarrow rectangular section b & h

7.4. DOUBLE REINFORCED FLANGED SECTION

7.4.3. CROSS SECTION WITH BLOCK STRESS IN THE WEB

COMBINATION OF THE PROCEDURES OF CHAPTERS 7.2 AND 7.3